
A SURVEY ON MODEL BASED TEST CASE
PRIORITIZATION

Sanjukta Mohanty#1, Arup Abhinna Acharya#2, Durga Prasad Mohapatra*3
#School of Computer Engineering, KIIT University,

Bhubaneswar, India

*Department of Computer Science Engineering
National Institute of Technology

Rourkela, India

Abstract— Regression testing is the process of validating
modifications introduced in a system during software
maintenance. As the test suite size is very large, system retesting
consumes large amount of time and computing resources. This
issue of retesting of software systems can be handled using a
good test case prioritization technique. A prioritization technique
schedules the test cases for execution so that the test cases with
higher priority executed before lower priority. The objective of
test case prioritization is to detect fault as early as possible. Test
case prioritization becomes a challenge in Component-based
Software System (CBSS) which facilitates development of
complex systems by integrating the reusable components. CBSS
has emerged as an approach that offers rapid development of
system using fewer resources and effort. The core idea of reuse
and reducing the development costs can be achieved if the
components offer reliable services. Thus, integration of
components and testing become an important phase in CBSS.
Integration of components involves understanding
communication and coordination between the components.
Developers do not provide the sufficient information on these
components. As a result of this, understanding of component
interactions while integrating these components becomes a
challenge. Testing components is a challenging area of research.
There have been troubles integrating the components. This in
turn affects the quality and reliability of the software. Our
research aims at analysing the existing test case prioritization
techniques in code based, requirement based and model based
prioritization techniques and it’ s implementation in CBSS . The
systematic literature survey is based on nine articles collected
from multiple-stage selection process.

Keywords— Regression Testing, Test Case Prioritization, CBSS.

I. INTRODUCTION

Regression testing is the process of testing a modified system
using the old test suites. Developers need to make sure that
modifications are correct and do not adversely affect the
unchanged portion of the system. During regression testing

the modified parts of the system are first tested. Then the
whole system needs to be retested using the old test suite to
have confidence that the modifications did not introduce new
faults into the system. Because of the large size of a test suite,
system retesting tends to consume a large amount of time and
computing resources; it may last for hours, or even days. So
one of the issues developers face during retesting of the
system is ordering test cases for execution. Test case
prioritization tries to address this issue. Test case prioritization
orders tests for execution so that the test cases with the higher
priority, based on some criterion, are executed before lower
priority test cases . Several test prioritization criteria are there.
For example, tests can be ordered to achieve selected code
coverage at the fastest rate[10]. There exist different types of
test case prioritization methods: code-based test case
prioritization and model-based test case prioritization [5]. In
code-based test case prioritization, source code of the system
is used to prioritize the test cases. Most of the test case
prioritization methods are code based. In model-based test
case prioritization a system’s model is used to prioritize the
test cases. System models are used to capture some aspects of
the system behaviour. The model based test case prioritization
may improve the early fault detection as compared to the
code-based test case prioritization. Model-based test
prioritization may be an inexpensive alternative to the existing
code-based test prioritization methods. However, model-based
test case prioritization may be sensitive to the correct/incorrect
information provided by the testers/developers. Hence model-
based test case prioritization is the best one compared to code-
based test case prioritization [6].

In the recent past, Component Based Software System (CBSS)
has gained a very high importance. This is attributed to the
reduction of cost and time in building the software using
reusable components. A component is a executable software
having a published interface. The identified advantages of
CBSS: Reduced lead time, enhanced quality. Developers are
not provided with sufficient information on these components.

Sanjukta Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1042-1047

1042

Reliance of components introduces problems of testing.
Testing components is a challenging area of research. Overall
our research objective is to find and scrutinize the current
techniques and issues in model based test case prioritization
techniques in CBSS. In this research paper we aim at
conducting a systematic literature survey of code based test
case prioritization, model based test case prioritization,
requirement based test case prioritization, component
interactions in component composition and model based test
case prioritization in CBSS.

The rest of the paper is organized as follows: Section II
describes the prioritization methodologies. Discussion
containing the advantages and disadvantages of various
prioritization are summarized in Section III. Section IV
presents conclusion and future work.

II. PRIORITIZATION METHODOLOGY

A. Code Based Test Case Prioritization

Srivastava [1], suggested prioritizing test cases according to
the criterion of increased APFD(Average percentage of Faults
detected) value. He proposed a new technique which could be
able to calculate the average number of faults found per
minute by a test case and using this value sorts the test cases
in decreasing order. APFD is calculated as:

Where T = the test suite under evaluation,

m = the number of faults contained in the program under test
P,

n = The total number of test cases and

TFi = The position of the first test in T that exposes fault i.

An experiment was conducted in which the rate of fault
detection for each test case is calculated and order of test suit
is evaluated in decreasing order of the value of rate of fault
detection. Than the APFD value is determined for both the
prioritized and non prioritized test suite and it is shown that
the APFD value of prioritized test suite is higher than the non
prioritized test suite. As prioritized test suite is more effective
due to higher APFD value than non prioritized test suite hence
test case prioritization is necessary.

Rothermel et al. [2], have formally defined the test case
prioritization problem and empirically investigated nine
prioritization techniques. Four of the techniques are based on
the coverage of either statements or branches for a program
and two of the techniques are based on the estimated ability to
reveal faults. Several experiments compared these with the
use of no prioritization (untreated), random prioritization and
optimal prioritization. The techniques are:

T1 : No prioritization.
T2 : Random prioritization.
T3: Optimal prioritization.
T4 : Total branch coverage prioritization.
T5 : Additional branch coverage prioritization.
T6:Total fault-exposing-potential (FEP) prioritization.
T7:Additional fault-exposing-potential(FEP) prioritization.
T8: Total statement coverage prioritization.
 T9:Additional statement coverage prioritization.

The experimental results showed that the prioritization techniques
can improve the rate of fault detection of test suites and
empirically examined their relative abilities to improve how
quickly faults can be detected by those suites. They
investigated coverage-based prioritization by examining a
wide range of prioritization techniques, and focused on
general, rather than modified version-specific, prioritization.

Prashant et al. [3], discussed the regression test framework
which orders test cases based on code coverage. First the test
suite is selected then sequencing is done based on some
criteria.
Tester marked the affected portion of code with help of
business analyst and development team and select the test
suite. The regression test prioritization implemented as Test
Framework built over a standard test automation tool Rational
Functional Tester. The prioritizer orders the test cases based
on code coverage information like lines of code, methods, and
blocks. The code coverage information is collected during
actual execution by the framework and stored in repository.
This data is analysed and used in prioritization during
subsequent execution cycle(s). The framework is integrated
with coverage analysis tool EMMA, an open source tool,
which collects code coverage information of each test case
during run time.
An experimental study has taken and the coverage
effectiveness of prioritized and non prioritized test suite is
analysed. The study shows that the prioritized test cases
achieve greater coverage in earlier execution phase than the
non prioritized test cases. The percentage code coverage
decreases as the execution moves in case prioritized test suite.
In non prioritized test suite execution, it varies period to
period and depends on the test cases executed during that
period.

Li et al. [4], focused on test case prioritization techniques for
code coverage, including block coverage, decision (branch)
coverage, and statement coverage. Five search techniques are
studied: two metaheuristic search techniques (Hill Climbing
and Genetic Algorithms), together with three greedy
algorithms (Greedy, Additional Greedy, and 2-Optimal
Greedy). An empirical study has been conducted and the
result of the study compared the performance of the five
search algorithms applied to six programs, ranging from 374
to 11,148 lines of code. For determining the effectiveness of
different techniques different metrics are used. Depending on
the coverage criterion, three metrics are considered :

APFD =

1-(TF1 + TF2+ + TFm)

nm

+

1

2n

Sanjukta Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1042-1047

1043

1. APBC (Average Percentage Block Coverage). This
measures the rate at which a prioritized test suite covers the
blocks.
2. APDC (Average Percentage Decision Coverage). This
measures the rate at which a prioritized test suite covers the
decisions (branches).
3. APSC (Average Percentage Statement Coverage). This
measures the rate at which a prioritized test suite covers the
statements.
This paper described five algorithms for the sequencing
problem in test case prioritization for regression testing. It
presented the results of an empirical study that investigated
their relative effectiveness. The data analysis indicate that the
Greedy Algorithm performs much worse than Additional
Greedy, 2-Optimal, and Genetic Algorithms overall. Also, the
2-Optimal Algorithm overcomes the weakness of the Greedy
Algorithm and Additional Greedy Algorithm. However, the
experiments indicate that, in terms of effectiveness, there is no
significant difference between the performance of the 2-
Optimal and Additional Greedy Algorithms. This suggests
that, where applicable, the cheaper-to-implement-and execute
additional Greedy Algorithm should be used.

B. MODEL BASED TEST CASE PRIORITIZATION

Korel et al. [5], performed a small experimental study in order
to compare simple code-based and model-based test
prioritization methods. The objective of this study was to
experimentally evaluate these methods with respect to the
effectiveness of early fault detection in the modified system.
The code based test prioritization techniques includes:

 Total Statement Coverage,
 Total Function Coverage,
 Additional Statement Coverage,
 Additional Function Coverage

In this paper the Additional Statement Coverage Prioritization
was selected, referred to as Heuristic #1. The model-based test
prioritization used a technique known as Heuristic #2, which
is based on marked transitions (when the modifications to the
source code are made, developers identify model elements
that are related to these modifications and such transitions are
referred as marked transitions.) criteria. The experimental
study has shown that model based test prioritization may
improve the early fault detection as compared to the code-
based test prioritization because the execution of the model is
very fast as compared to the execution of the actual system.
Therefore, execution of the model for the whole test suite is
relatively inexpensive, whereas execution of the system for
the whole test suite, as required by some code-based test
prioritization methods, may be expensive (both resource-wise
and time-wise). Model-based test prioritization may be
sensitive to the correct/incorrect information provided by the
testers/developers.

Korel et al. [6], prioritized the test cases by using several
model-based test prioritization heuristics. The existing model
based test prioritization methods can only be used when

models are modified during system maintenance. But they
presented model-based prioritization for a class of
modifications for which models are not modified (only the
source code is modified). An experimental study has been
conducted to investigate the effectiveness of those methods
with respect to early fault detection. The results from the
experiment suggested that system models may improve the
effectiveness of test prioritization. Several model-based test
prioritization heuristics are:

 selective prioritization,
 Heuristic #1 prioritization,
 Heuristic #2 prioritization,
 Heuristic #3 prioritization, and
 model dependence-based prioritization,

where Heuristics #1, #2 and #3 have been developed for
modifications with multiple-marked transitions.

C. REQUIREMENT BASED TEST CASE PRIORITIZATION

Srikanth et al.[7], developed a prioritization scheme with three
main goals: identifying the severe faults earlier, to improve
the software field quality and to devise the minimal set of
PORT(Prioritization of Requirements for Testing) PFs
(Prioritization Factors) that can be used to effectively for test
case prioritization.
Current Test Case Prioritization schemes are enhanced by
incorporating additional knowledge gained through
requirements engineering research:
(a) requirements with high complexity tend to have a higher
number of faults ,
(b) requirements volatility, which results in re-design, addition
or deletion of existing requirements, tend to increase project
risk , and fault density , thus often times causing project
failures ,
(c) roughly 20% of the system is responsible for about 80% of
the faults .
Here the main criteria used is prioritization factors. For
measuring the PFs a equation is used i.e
 n
WP= ∑ = (PF value * PF weight)...............................(1)
 PF=1

Based on the project and customer needs, the development
team assigns weight to the PFs such that the assigned total
weight (1.0) is divided amongst the PFs. For every
requirement, the above equation is used to calculate a
weighted prioritization (WP) factor that measures the
importance of testing a requirement earlier. Test cases are then
ordered such that the test cases for requirements with high WP
are executed before others.

Acharya et al. [8], generated test cases for testing components
in component composition technology. They modelled
component interactions using a Component Interaction Graph
(CIG) which depicts interaction scenarios among components.
A new algorithm is applied on state chart diagrams to
construct CIG. An example Vending Machine which contains
a component Dispenser has taken for better understanding of

Sanjukta Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1042-1047

1044

component interactions. Dispenser provides an interface that
is used by Vending Machine. Vending Machine uses the
services provided by Dispenser to manage credits inserted into
the vending machine, validate selections, and check for
availability of requested items.

Wu et al. [9], presented a test model that depicts a generic
infrastructure of component based systems and suggested key
test elements. The test model is realized using a Component
Interaction Graph (CIG) in which the interactions and the
dependence relationships among components are illustrated.
By utilizing the CIG, the authors proposed a family of test
adequacy criteria which are as follows:

 All-interfaces coverage
 All-events coverage
 All-context-dependence coverage
 All context/some-content-dependence coverage
 All-content-dependence coverage

To explore the potential of test model a case study has been
conducted to investigate the possible usages of these elements
in testing and to compare their relative strengths. The
methodology proposed is efficient and effective, as
demonstrated by promising results obtained from a case study.

III. DISCUSSION

The disadvantage of Srivastava [1], is calculation of APFD is
only possible when prior knowledge of faults is available.
APFD calculations therefore are only used for evaluation.

Rothermel et al. [2], discussed the effectiveness of different
techniques. To measure the effectiveness of these techniques,
an experiment was conducted where 7 different programs
were taken, for each subject program , the prioritization
techniques T2 through T9 were applied to each of the 1000
sample test suites, yielding 8000 prioritized test suites. The
original test suite (not reordered) was retained as a control; for
analysis this was considered “prioritized” by technique T1 .
The APFD values of these 63000 prioritized test suites were
calculated and used as the statistical data set. It was shown
that additional FEP prioritization outperformed all
prioritization techniques based on coverage. Furthermore,
total FEP prioritization outperformed all coverage-based
techniques other than total branch coverage prioritization.
However, these results did vary across individual programs
and, where FEP-based techniques did outperform coverage-
based techniques, the total gain in APFD was not great. These
results suggested that FEP-based prioritization may not be as
cost-effective as coverage-based techniques. Again
considering overall results, total branch coverage
prioritization outperformed additional branch coverage
prioritization and that total statement coverage prioritization
outperformed additional statement coverage prioritization.
These effects, too, vary across the individual programs.
Nevertheless, the worst-case costs of total branch and
statement coverage prioritization are much less than the worst-
case costs of additional branch and statement coverage

prioritization; this suggests that the less expensive total-
coverage prioritization schemes may be more cost-effective
than additional-coverage schemes. Another effect worth
noting is that generally (on five of the seven programs)
randomly prioritized test suites outperformed untreated test
suites. We conjecture that this difference is due to the type of
test suites and faults used in the study. Random prioritization
essentially redistributes test cases that reach and expose these
faults throughout the test suites, causing the faults to be
detected more quickly. However the disadvantages of all the
techniques are based on execution of the number of marked
transition like the test case which covered maximum marked
transition are given higher priority. So considering only one
criteria may not significantly improve the early fault detection.

The experimental results indicate that some types of
information about models may not improve the effectiveness
of early fault detection. In addition, the results have shown
that some simple heuristic methods can be as effective in early
fault detection as more complex ones. More importance is
given to coverage based prioritization like statement coverage,
branch coverage etc.

The advantage of Prashant et al. [3], is that a test
prioritizer(test frame work) as extension to Test Automation
tool is taken which is practically implemented. This paper also
presents the results of empirical studies that evaluate test
prioritizer. However the disadvantage is that the results may
vary if prioritization is done using different criteria like
methods, block, classes or its combination. If different tool is
used for coverage analysis, result of test prioritization may
vary as different techniques are used by the tool for measuring
coverage. The performance of Automated test execution is
reduced as testing is done on instrumented version of
application. It is an expensive one as this technique is totally
based upon code coverage.

Li et al. [4], studied metaheuristic and evolutionary algorithms
empirically for test case prioritization which are the most
efficient for regression testing. Which depicts the advantage of
work done.

The disadvantage of Korel et al. [5], is no extensive study has
performed. The experimental study presented in this paper
was limited to two test prioritization heuristics only.

Korel et al. [6], found out the effectiveness of different
techniques. To compare different test prioritization methods,
the concept of the most likely relative position, RP(d), is used.
RP(d) is a metric that is used during an experimental study
and represents an average (most likely) relative position of the
first failed test that detects d for a test prioritization method.
The results from the experimental study indicate that some
model-based test prioritization methods may improve on
average the effectiveness of early fault detection as compared
to random prioritization. The effectiveness of different
Heuristics are measured by RP(d) metric and it is shown by
box plots. The best performance is shown by the model-based
test prioritization (IP) and Heuristic #3. Effectiveness of

Sanjukta Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1042-1047

1045

Heuristic #1 and Heuristic #2 prioritization methods is
comparable with the selective prioritization because Heuristic
#1 and #2 prioritization did not perform well compared to the
selective prioritization. These results may suggest that
considering only the number of executions of marked
transitions may not have a significant influence on the
improvement of the early fault detection. For modifications
that involve one marked transition, model dependence-based
prioritization outperforms Heuristic #3. For modifications
with one marked transition, performance of Heuristic #3 is
equivalent to the selective prioritization. For modifications
with multiple-marked transitions, Heuristic #3 slightly
outperforms the model dependence based prioritization.
However, since Heuristic #3 is much simpler it may be more
preferable for these types of modifications.

The advantage of Srikanth et al. [7], is PORT could improve
the effectiveness of testing activities as it (1) reduces the effort
utilized for TCP in comparison to coverage-based techniques
that prioritize based on the number of statements or branches
covered, and (2) focuses on functionalities that are of highest
value to the customer, and (3) improves the rate of detection
of severe faults. Rectifying severe faults earlier is believed to
improve perceived software quality.

Acharya et al. [8], discussed the following advantages.
Although much work has been proposed for building
component-based systems, techniques for testing component-
based systems have not been well developed. In this article,
they have presented a new approach for testing component
based software and the empirical studies show that testing
component based software is necessary yet expensive. The
technique they proposed includes several criteria for
determining test adequacy. However the disadvantage is after
the composition a new test case set for the composed
component no prioritization technique is developed to
prioritize the newly generated test cases.
 Wu et al. [9], discussed about the different criteria capable
detecting the faults. Test case selections based on the all-
interfaces, all-events criteria are simple and efficient, however
they can provide only a certain level of reliability. To further
improve the quality of the system, allcontext/some-content-
dependence criterion is necessary. The all-context/ some-
content-dependence criterion is capable of detecting the
majority of these faults, though the all-content-paths criterion
can be used to detect more faults. The result demonstrates
that after enforcing the allcontext/some-content-dependences
criterion, it is not only detected 84% of the faults but also
found 3 new faults in the system. Moreover the test effort they
spent is only 41% of effort required by the functional testing
approaches. The disadvantage of Wu et al. [9], is to
investigate the efficiency of the technique more experiments
are needed to make it useful in the real world. However the
advantage of this article is, the technique proposed in this
article, includes several criteria for determining test adequacy.
The all-context/ some-content-dependence criterion used only
41% of test cases yet detected 84% of the faults; even the
weakest criterion, the all-interface, used 26% of test cases and

detected 26% of the faults. Therefore, the strengths of the
technique can be expected. This method, which can be applied
to all types of component-based systems, does not rely on the
knowledge of source code.

IV. CONCLUSION AND FUTURE WORK

In our study of exiting testing techniques research is focused
on techniques based on codes, models and UML state chart
diagrams. For determining the effectiveness of prioritization
techniques two metrics (APFD and RPd) are used. There is
good coverage in terms of research in understanding the
concepts of different code based techniques and behaviour of
components, interactions and compatibility of components. In
future more numbers of criteria may be included like number
of state changes by a test case during component
interactions ,and during the state changes , the number of
times ,the test case is going to access the data base, as whether
it is going to access single attribute or multiple attributes from
a database schema. Further as optimization technique like
Genetic Algorithm (GA) may be applied over our proposed
technique to explore a more effective prioritized test suite.
The proposed frame work is diagrammatically represented in
Fig.1

Fig.1. A frame work for prioritization of test cases

Database
Design

Document

State Chart
Diagrams

Details Of
Database

Access(Direct
,Indirect)

CIG

Old Test
Suites

Prioritization
Algorithm
Using GA

Prioritized Test Suites
(output)

CFG

Requirement
Specification

Sanjukta Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1042-1047

1046

REFERENCES

 [1] P. R. Srivastava, “Test Case Prioritization,” Journal of Theoritical And
Applied Information Technology, JATIT 2008 .

[2] G. Rothermel, R.H.Untch, C.Chu ,M.J.Harrold, “Test Case
Prioritization:An Emperical Study,” in Proceedings of the 24th IEEE
International Conference Software Maintenance (ICSM ’1999) Oxford, U.K,
September 1999 .

[3] P. Malangave, D. B. Kulkarni, “Efficient Test case Prioritization in
Regression Testinng”.

[4] Z.Li, M. Harman, and R. M. Hierons,” Search Algorithms for Regression
Test Case Prioritization,” IEEE Transactions On Software Engineering, Vol.
33, No. 4, April 2007.

[5] B. Korel, G. Koutsogiannakis, “Experimental Comparsion of Code Based
and Model model Based Test prioritization,” IEEE 2009.

[6] B. Korel, G. Koutsogiannakis, and L.H.Tahat, “Application of System
Models in Regression Test Suite Prioritization,” in Proceedings of the 24th
IEEE International Conference Software Maintenance (ICSM ’08) pp.247-
256, 2008.

[7] Hema Srikanth and Laurie Williams, “Requirements-Based Test Case
Prioritization,” North Carolina State University, ACM SIGSOFT Software
Engineering, pages 1-3, 2005.

[8] A. A. Acharya, S. K. Jena, “Component Interaction Graph: A new
approach to test component composition,” Journal of Computer Science and
Engineering, Volume 1, Issue 1, May 2010.

[9] Y. Wu, D. Pan and M. Chen. “Techniques for testing component-based
software,” In Proceedings of the 7th IEEE International Conference on
Engineering of Complex Computer Systems. pp. 222-232, 2001 .

[10] G. Rothermel, R. Untch, M. Harrol, “Prioritizing Test Cases For
Regression Testing,” IEEE Transactions on Software Engineering, volume
27, No. 10, pp. 929-948, 2001.

Sanjukta Mohanty et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1042-1047

1047

